Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
PDA J Pharm Sci Technol ; 78(2): 187-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38609155

RESUMO

The use of detergents or low pH hold are commonly employed techniques in biologics downstream processing to inactivate enveloped viruses. These approaches have been demonstrated to be robust and are detailed in ASTM E2888 (low pH) and ASTM E3042-16 (Triton X-100), accordingly. One of the recent challenges is the need for a replacement of Triton X-100 with a more environmentally friendly detergent with similar log10 reduction value (LRV) achieved. The presentations in this session focused on a detailed assessment of a range of detergents. The most well characterized and potentially robust detergents identified were TDAO (n-Tetradecyl-N,N-dimethylamine-N-oxide) and Simulsol SL 11 W. Key performance factors assessed (in direct comparison with the industry standard Triton X-100) were viral inactivation kinetics (total elapsed time to achieve equilibrium), LRV achieved of enveloped viruses, toxicity, potential impact on product quality and process performance, clearance of residual detergent in subsequent downstream steps, assays to support assessment with appropriate limit of quantification, and commercial supply of detergent of the appropriate quality standard. Both TDAO and Simulsol SL11 had similar overall LRV as Triton-100. In addition, for the low pH viral inactivation, reduced LRV was observed at pH > 3.70 and low salt concentration (outside of the ASTM range), which is a cautionary note when applying low pH inactivation to labile proteins.


Assuntos
Produtos Biológicos , Detergentes , Octoxinol , Inativação de Vírus , Bioensaio
2.
BMC Biotechnol ; 24(1): 20, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637734

RESUMO

BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , DNA de Cloroplastos/genética , Plantas Medicinais/genética , Cloroplastos/genética , Mapeamento Cromossômico , Filogenia
3.
BMC Genomics ; 25(1): 394, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649832

RESUMO

BACKGROUND: Untargeted metabolomics and proteomics were employed to investigate the intracellular response of yak rumen epithelial cells (YRECs) to conditions mimicking subacute rumen acidosis (SARA) etiology, including exposure to short-chain fatty acids (SCFA), low pH5.5 (Acid), and lipopolysaccharide (LPS) exposure for 24 h. RESULTS: These treatments significantly altered the cellular morphology of YRECs. Metabolomic analysis identified significant perturbations with SCFA, Acid and LPS treatment affecting 259, 245 and 196 metabolites (VIP > 1, P < 0.05, and fold change (FC) ≥ 1.5 or FC ≤ 0.667). Proteomic analysis revealed that treatment with SCFA, Acid, and LPS resulted in differential expression of 1251, 1396, and 242 proteins, respectively (FC ≥ 1.2 or ≤ 0.83, P < 0.05, FDR < 1%). Treatment with SCFA induced elevated levels of metabolites involved in purine metabolism, glutathione metabolism, and arginine biosynthesis, and dysregulated proteins associated with actin cytoskeleton organization and ribosome pathways. Furthermore, SCFA reduced the number, morphology, and functionality of mitochondria, leading to oxidative damage and inhibition of cell survival. Gene expression analysis revealed a decrease the genes expression of the cytoskeleton and cell cycle, while the genes expression associated with inflammation and autophagy increased (P < 0.05). Acid exposure altered metabolites related to purine metabolism, and affected proteins associated with complement and coagulation cascades and RNA degradation. Acid also leads to mitochondrial dysfunction, alterations in mitochondrial integrity, and reduced ATP generation. It also causes actin filaments to change from filamentous to punctate, affecting cellular cytoskeletal function, and increases inflammation-related molecules, indicating the promotion of inflammatory responses and cellular damage (P < 0.05). LPS treatment induced differential expression of proteins involved in the TNF signaling pathway and cytokine-cytokine receptor interaction, accompanied by alterations in metabolites associated with arachidonic acid metabolism and MAPK signaling (P < 0.05). The inflammatory response and activation of signaling pathways induced by LPS treatment were also confirmed through protein interaction network analysis. The integrated analysis reveals co-enrichment of proteins and metabolites in cellular signaling and metabolic pathways. CONCLUSIONS: In summary, this study contributes to a comprehensive understanding of the detrimental effects of SARA-associated factors on YRECs, elucidating their molecular mechanisms and providing potential therapeutic targets for mitigating SARA.


Assuntos
Acidose , Proliferação de Células , Células Epiteliais , Metabolômica , Proteômica , Rúmen , Animais , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Acidose/veterinária , Acidose/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Lipopolissacarídeos , Doenças dos Bovinos/metabolismo , Proteoma/metabolismo
4.
Biologicals ; 86: 101753, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38492418

RESUMO

Biopharmaceutical manufacturing processes may include a low pH treatment step as a means of inactivating enveloped viruses. Small scale virus clearance studies are routinely performed using model enveloped viruses such as murine leukemia virus to assess inactivation at the pH range used in the downstream manufacturing process. Further, as a means of bioburden reduction, chromatography resins may be cleaned and stored using sodium hydroxide and this can also inactivate viruses. The susceptibility of SARS-CoV-2 and SARS-CoV to low pH conditions using protein A eluate derived material from a monoclonal antibody production process as well as high pH cleaning conditions was addressed. SARS-CoV-2 was effectively inactivated at pH 3.0, moderately inactivated at pH 3.4, but not inactivated at pH 3.8. Low pH was less effective at inactivating SARS-CoV. Both viruses were inactivated at a high pH of ca.13.4. These studies provide important information regarding the effectiveness of viral clearance and inactivation steps of novel coronaviruses when compared to other enveloped viruses.

5.
Aquat Toxicol ; 270: 106903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503037

RESUMO

Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.


Assuntos
Microbiota , Poluentes Químicos da Água , Animais , Astacoidea/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Metaboloma , Bacteroidetes/genética , Homeostase , Intestinos , Concentração de Íons de Hidrogênio
6.
Microorganisms ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543586

RESUMO

Three lipid-enveloped viruses (bovine viral diarrhea virus [BVDV], vaccinia virus, and severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) were evaluated in side-by-side liquid inactivation efficacy studies of low pH (3.0 to 3.1) treatment and of the non-formulated microbicidal actives sodium hypochlorite (100 ppm), ethanol (70%), quaternary ammonium compound BTC® 835 (100 ppm), and peracetic acid (100 ppm). Low pH was evaluated at 10 and 60 min contact times, and the microbicides were evaluated at 1 min contact time at room temperature per the ASTM E1052 standard. In each case, 5% animal serum was included in the viral inoculum as a challenge soil load. The three viruses displayed similar susceptibility to sodium hypochlorite and ethanol, with complete inactivation resulting. Significant differences in susceptibility to BTC® 835 and peracetic acid were identified, with the ordering of the three viruses for susceptibility to BTC® 835 being SARS-CoV-2 > vaccinia virus = BVDV, and the ordering for peracetic acid being vaccinia virus > SARS-CoV-2 > BVDV. The ordering for susceptibility to low pH treatment (60 min contact time) was vaccinia virus > SARS-CoV-2 > BVDV. Not all enveloped viruses display equivalent susceptibilities to inactivation approaches. For the chemistries evaluated here, BVDV appears to represent a worst-case enveloped virus.

7.
Front Plant Sci ; 15: 1332459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410729

RESUMO

Boron (B) is an essential microelement for plants, and its deficiency can lead to impaired development and function. Around 50% of arable land in the world is acidic, and low pH in the soil solution decreases availability of several essential mineral elements, including B, magnesium (Mg), calcium (Ca), and potassium (K). Plants take up soil B in the form of boric acid (H3BO3) in acidic soil or tetrahydroxy borate [B(OH)4]- at neutral or alkaline pH. Boron can participate directly or indirectly in plant metabolism, including in the synthesis of the cell wall and plasma membrane, in carbohydrate and protein metabolism, and in the formation of ribonucleic acid (RNA). In addition, B interacts with other nutrients such as Ca, nitrogen (N), phosphorus (P), K, and zinc (Zn). In this review, we discuss the mechanisms of B uptake, absorption, and accumulation and its interactions with other elements, and how it contributes to the adaptation of plants to different environmental conditions. We also discuss potential B-mediated networks at the physiological and molecular levels involved in plant growth and development.

8.
Int J Infect Dis ; 140: 119-123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325748

RESUMO

Carboxylic organic acids are intermediates of central carbon metabolic pathways (e.g. acetic, propionic, citric, and lactic acid) long known to have potent antimicrobial potential, mainly at acidic pHs. The food industry has been leveraging those properties for years, using many of these acids as preservatives to inhibit the growth of pathogenic and/or spoilage fungal and bacterial species. A few of these molecules (the most prominent being acetic acid) have been used as antiseptics since Hippocratic medicine, mainly to treat infected wounds in patients with burns. With the growth of antibiotic therapy, the use of carboxylic acids (and other chemical antiseptics) in clinical settings lost relevance; however, with the continuous emergence of multi-antibiotic/antifungal resistant strains, the search for alternatives has intensified. This prospective article raises awareness of the potential of carboxylic acids to control infections in clinical settings, considering not only their previous exploitation in this context (which we overview) but also the positive experience of their safe use in food preservation. At a time of great concern with antimicrobial resistance and the slow arrival of new antimicrobial therapeutics to the market, further exploration of organic acids as anti-infective molecules may pave the way to more sustainable prophylactic and therapeutic approaches.


Assuntos
Anti-Infecciosos , Ácidos Carboxílicos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/uso terapêutico , Conservantes de Alimentos/farmacologia , Estudos Prospectivos
9.
Vet Res ; 55(1): 22, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374131

RESUMO

Clinically, Landrace pigs are more susceptible to porcine circovirus-associated diseases (PCVADs) than Piétrain pigs. We previously found that porcine circovirus type 2 (PCV2) can infect T-lymphoblasts. The present study examined the replication kinetics of six PCV2 strains in the lymphoblasts of Landrace and Piétrain pigs. The results showed that T-lymphoblasts from Landrace pigs are much more susceptible to PCV2 infection than those from Piétrain pigs. In addition, PCV2 replication was strain-dependent. PCV2 binding to T-lymphoblasts was partially mediated by chondroitin sulfate (CS) and dermatan sulfate (DS). Phosphacan, an effective internalization mediator in monocytes that contains several CS chains, was also demonstrated to be involved in PCV2 internalization. Viral binding and internalization were not different between the two breeds, however, the subsequent step, the disassembly was. Although inhibition of serine proteases blocked PCV2 replication in both Landrace and Piétrain pigs, this only occurred at a neutral pH in Piétrain pigs, whereas this occurred also at a low pH in Landrace. This suggested that more proteases can cleave PCV2 in Landrace lymphoblasts than in Piétrain lymphoblasts, explaining the better replication. Through co-localization studies of viral particles with endo-lysosomal markers, and quantitative analysis of organelle sizes during viral internalization, it was observed that PCV2 may exhibit a higher propensity for viral escape from late endosomes in Landrace pigs (smaller) compared to Piétrain pigs. These results provide new understandings of the different PCV2 susceptibility in Landrace and Piétrain pigs.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Linfócitos T , Circovirus/fisiologia , Linfócitos , Internalização do Vírus , Infecções por Circoviridae/veterinária
10.
Appl Microbiol Biotechnol ; 108(1): 121, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229303

RESUMO

The model yeast, Saccharomyces cerevisiae, is a popular object for both fundamental and applied research, including the development of biosensors and industrial production of pharmaceutical compounds. However, despite multiple studies exploring S. cerevisiae transcriptional response to various substances, this response is unknown for some substances produced in yeast, such as D-lactic acid (DLA). Here, we explore the transcriptional response of the BY4742 strain to a wide range of DLA concentrations (from 0.05 to 45 mM), and compare it to the response to 45 mM L-lactic acid (LLA). We recorded a response to 5 and 45 mM DLA (125 and 113 differentially expressed genes (DEGs), respectively; > 50% shared) and a less pronounced response to 45 mM LLA (63 DEGs; > 30% shared with at least one DLA treatment). Our data did not reveal natural yeast promoters quantitatively sensing DLA but provide the first description of the transcriptome-wide response to DLA and enrich our understanding of the LLA response. Some DLA-activated genes were indeed related to lactate metabolism, as well as iron uptake and cell wall structure. Additional analyses showed that at least some of these genes were activated only by acidic form of DLA but not its salt, revealing the role of pH. The list of LLA-responsive genes was similar to those published previously and also included iron uptake and cell wall genes, as well as genes responding to other weak acids. These data might be instrumental for optimization of lactate production in yeast and yeast co-cultivation with lactic acid bacteria. KEY POINTS: • We present the first dataset on yeast transcriptional response to DLA. • Differential gene expression was correlated with yeast growth inhibition. • The transcriptome response to DLA was richer in comparison to LLA.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ferro/metabolismo
11.
J Chromatogr A ; 1713: 464523, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38041974

RESUMO

Protein A affinity chromatography is widely used as a capture step for monoclonal antibodies (mAb) and molecules that possess an Fc-domain, such as fusion proteins and bispecific antibodies. However, the use of low pH (3.0-4.0) to elute the molecule and achieve acceptable yield (>85 %) can lead to product degradation (e.g. fragmentation, aggregation) for molecules sensitive to low pH. In this paper, we describe a comprehensive evaluation of two protein A resins with ligands designed to elute at a milder pH as a result of modified sequences in their Fc and VH3 binding regions. One of the evaluated resins has been made commercially available by Purolite and named Praesto Jetted A50 HipH. Results demonstrated that Jetted A50 HipH could elute the Fc-fusion protein and most mAbs evaluated with an elution pH at or above 4.6. Elution and wash optimization determined run conditions for high recovery (>90 % monomer yield), reduction of high molecular weight (HMW) species (>50 %), and significant host cell protein (HCP) clearance at the mildest elution pH possible. For a pH-stable mAb and a pH-sensitive fusion protein, cell culture material was purified with optimized conditions and demonstrated the mild elution pH resins' ability to purify product with acceptable yield, comparable or better impurity clearance, and significantly milder native eluate pH compared to traditional resins. The benefits of the mild elution pH resins were clearly exemplified for the pH-sensitive protein, where a milder elution buffer and native eluate pH resulted in only 2 % HMW in the eluate that remained stable over 48 h. In contrast, a traditional protein A resin requiring low pH elution led to eluate HMW levels of 8 %, which increased to 16 % over the same hold time. Additionally, these resins have high dynamic binding capacity and allow the use of traditional HCP washes. Therefore, Jetted A50 HipH is an ideal candidate for a platform protein A resin and provides flexibility for pH-sensitive proteins and stable mAbs, while preserving product quality, recovery, and seamless integration into a downstream process.


Assuntos
Anticorpos Biespecíficos , Proteína Estafilocócica A , Cricetinae , Animais , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química , Técnicas de Cultura de Células , Concentração de Íons de Hidrogênio , Cromatografia de Afinidade/métodos , Células CHO
12.
Microbiol Spectr ; 12(1): e0253623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018981

RESUMO

IMPORTANCE: Issatchenkia orientalis is a promising industrial chassis to produce biofuels and bioproducts due to its high tolerance to multiple environmental stresses such as low pH, heat, and other chemicals otherwise toxic for the most widely used microbes. Yet, little is known about specific mechanisms of such tolerance in this organism, hindering our ability to engineer this species to produce valuable biochemicals. Here, we report a comprehensive study of the mechanisms of acidic tolerance in this species via transcriptome profiling across variable pH for 12 different strains with different phenotypes. We found multiple regulatory mechanisms involved in tolerance to low pH in different strains of I. orientalis, marking potential targets for future gene editing and perturbation experiments.


Assuntos
Pichia , Transcriptoma , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio
13.
Microbiome ; 11(1): 270, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049915

RESUMO

BACKGROUND: Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS: We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS: Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Ecossistema , Temperatura , Prótons , Carbono/metabolismo , DNA , Fontes Hidrotermais/microbiologia , Filogenia
14.
Food Chem X ; 20: 101020, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144797

RESUMO

Sodium copper chlorophyllin (SCC), with a higher stability and water solubility than chlorophyll, has limited applications in acidic products due to precipitation. We investigated the effect of pectin (PE), carboxymethyl cellulose (CMC), xanthan gum (XG), carrageenan gum (CG), gellan gum (GG), tragacanth gum (TG), gum Arabic (GA), and polysorbate 80 (PS80) on SCC stability in acidic model solutions (pH = 3.5). These stabilizers led to a significant reduction in particle size and zeta-potential compared to control sample. GA (33.3:1), PE (8:1), CMC (4:1), XG (1.33:1), and PS80 (0.67:1) stabilized SCC in acidic systems for 28 days. The FTIR analysis showed that mainly electrostatic and hydrogen bonds between SCC and stabilizers led to a substantial decline in particle size, improving SCC distribution and stability within acidic environment. Thus, XG and CMC could be effectively used for SCC stabilization under acidic solutions where applying PS80 surfactant is a health concern.

15.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958653

RESUMO

Aluminum (Al) toxicity and low pH are major factors limiting plant growth in acidic soils. Sensitive to Proton Rhizotoxicity 1 (STOP1) transcription factors respond to these stresses by regulating the expression of multiple Al- or low pH-responsive genes. ZmSTOP1-A, a STOP1-like protein from maize (Zea mays), was localized to the nucleus and showed transactivation activity. ZmSTOP1-A was expressed moderately in both roots and shoots of maize seedlings, but was not induced by Al stress or low pH. Overexpression of ZmSTOP1-A in Arabidopsis Atstop1 mutant partially restored Al tolerance and improved low pH tolerance with respect to root growth. Regarding Al tolerance, ZmSTOP1-A/Atstop1 plants showed clear upregulation of organic acid transporter genes, leading to increased organic acid secretion and reduced Al accumulation in roots. In addition, the antioxidant enzyme activity in roots and shoots of ZmSTOP1-A/Atstop1 plants was significantly enhanced, ultimately alleviating Al toxicity via scavenging reactive oxygen species. Similarly, ZmSTOP1-A could directly activate ZmMATE1 expression in maize, positively correlated with the number of Al-responsive GGNVS cis-elements in the ZmMATE1 promoter. Our results reveal that ZmSTOP1-A is an important transcription factor conferring Al tolerance by enhancing organic acid secretion and reactive oxygen species scavenging in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
16.
BMC Res Notes ; 16(1): 342, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978409

RESUMO

Acid deposition has been one of the major environmental pollution problems for longer than 50 years, since the 1970s. Investigation on the interactive effects of aluminum (Al) and low pH or Ca/Al ratios on red pine (Pinus densiflora Sieb. and Zucc.) has been required but lacking. In the present study, needles of red pine seedlings exposed to Al treatments with solution pH 4.0 and 3.5 exhibited purplish leaf characteristics of Al toxicity. The dry weights of the needle and whole plant, and the current needle elongation were linearly reduced with Al concentrations from 0, 13 to 26 ppm. Results show that red pine is an intermediate species in sensitivity to Al and is insensitive to low pH. However, the synergistic interactions of low pH treatments with the elevated Al were significant. Al toxicity to red pine was significantly enlarged with reduced pH. The root length and whole plant length were significantly decreased at 1:10 of Ca/Al ratios (p < 0.05), but Al phytotoxicity was completely lost when the Ca/Al molar ratio was 10:1. Liming is still an applicable measure to remediate acidification problems by natural or anthropogenic factors such as acid deposition.


Assuntos
Pinus , Plântula , Alumínio/toxicidade , Concentração de Íons de Hidrogênio
17.
mBio ; : e0208723, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874146

RESUMO

Membrane fusion mediated by herpes simplex virus 1 (HSV-1) is a complex, multi-protein process that is receptor triggered and can occur both at the cell surface and in endosomes. To deconvolute this complexity, we reconstituted HSV-1 fusion with synthetic lipid vesicles in vitro. Using this simplified, controllable system, we discovered that HSV-1 fusion required not only a cognate host receptor but also low pH. On the target membrane side, efficient fusion required cholesterol, negatively charged lipids found in the endosomal membranes, and an optimal balance of lipid order and disorder. On the virion side, the four HSV-1 entry glycoproteins-gB, gD, gH, and gL-were sufficient for fusion. We propose that low pH is a biologically relevant co-trigger for HSV-1 fusion. The dependence of fusion on low pH and endosomal lipids could explain why HSV-1 enters most cell types by endocytosis. We hypothesize that under neutral pH conditions, other, yet undefined, cellular factors may serve as fusion co-triggers. The in vitro fusion system established here can be employed to systematically investigate HSV-1-mediated membrane fusion.IMPORTANCEHSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.

18.
Materials (Basel) ; 16(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37763489

RESUMO

Different sands have significant influences on MICP reinforcement effects. Using calcium carbonate production and bioflocculation lag period as evaluation criteria, this study investigates the optimal theoretical pH values of bacterial solutions with different concentrations. We reinforced four different sands using MICP at the optimal theoretical pH, and based on permeability, moisture retention, raindrop erosion, wind erosion, penetration, and SEM tests, the influence of sand properties on low-pH MICP reinforcement was analyzed and the low-pH MICP mechanism was revealed. The results indicate the following: (1) The optimal theoretical pH values for bacterial solutions with concentrations of 0.67 × 108 cells/mL, 3 × 108 cells/mL, and 10 × 108 cells/mL are 4.5, 3, and 4, respectively. (2) With 0.67 × 108, 3 × 108, and 10 × 108 cells/mL bacterial solutions, the strength of tailings sand containing calcium salt was 21.15%, 44.42%, and 13.61% higher than that of quartz sand, respectively. The effective reinforcement depth of alkaline reclaimed sand was 10, 8, and 6 mm lower than that of neutral calcareous sand, respectively. The strength of fine tailings sand was 70.41%, 58.04%, and 22.6% higher than that of coarse reclaimed sand. The effective reinforcement depth of fine quartz sand was 6, 4, and 4 mm lower than that of coarse calcareous sand. (3) Low pH temporarily suppresses urease activity, delaying calcium carbonate flocculation and enhancing reinforcement uniformity. To achieve optimal reinforcement effects, adjusting the actual optimal pH values of bacterial solution based on sand properties is essential in engineering applications.

19.
J Transl Med ; 21(1): 572, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626430

RESUMO

BACKGROUND: Immunotoxins are antibody-toxin conjugates that bind to surface antigens and exert effective cytotoxic activity after internalization into tumor cells. Immunotoxins exhibit effective cytotoxicity and have been approved by the FDA to treat multiple hematological malignancies, such as hairy cell leukemia and cutaneous T-cell lymphoma. However, most of the internalized immunotoxin is degraded in lysosomes, and only approximately 5% of free toxin escapes into the cytosol to exert cytotoxicity. Many studies have improved immunotoxins by engineering the toxin fragment to reduce immunogenicity or increase stability, but how the antibody fragment contributes to the activity of immunotoxins has not been well demonstrated. METHODS: In the current study, we used 32A9 and 42A1, two anti-GPC3 antibodies with similar antigen-binding capabilities and internalization rates, to construct scFv-mPE24 immunotoxins and evaluated their in vitro and in vivo antitumor activities. Next, the antigen-binding capacity, trafficking, intracellular protein stability and release of free toxin of 32A9 scFv-mPE24 and 42A1 scFv-mPE24 were compared to elucidate their different antitumor activities. Furthermore, we used a lysosome inhibitor to evaluate the degradation behavior of 32A9 scFv-mPE24 and 42A1 scFv-mPE24. Finally, the antigen-binding patterns of 32A9 and 42A1 were compared under neutral and acidic pH conditions. RESULTS: Although 32A9 and 42A1 had similar antigen binding capacities and internalization rates, 32A9 scFv-mPE24 had superior antitumor activity compared to 42A1 scFv-mPE24. We found that 32A9 scFv-mPE24 exhibited faster degradation and drove efficient free toxin release compared to 42A1 scFv-mPE24. These phenomena were determined by the different degradation behaviors of 32A9 scFv-mPE24 and 42A1 scFv-mPE24 in lysosomes. Moreover, 32A9 was sensitive to the low-pH environment, which made the 32A9 conjugate easily lose antigen binding and undergo degradation in lysosomes, and the free toxin was then efficiently produced to exert cytotoxicity, whereas 42A1 was resistant to the acidic environment, which kept the 42A1 conjugate relatively stable in lysosomes and delayed the release of free toxin. CONCLUSIONS: These results showed that a low pH-sensitive antibody-based immunotoxin degraded faster in lysosomes, caused effective free toxin release, and led to improved cytotoxicity compared to an immunotoxin based on a normal antibody. Our findings suggested that a low pH-sensitive antibody might have an advantage in the design of immunotoxins and other lysosomal degradation-dependent antibody conjugate drugs.


Assuntos
Neoplasias Hematológicas , Imunotoxinas , Humanos , Imunotoxinas/farmacologia , Anticorpos , Citosol , Concentração de Íons de Hidrogênio
20.
Water Res ; 243: 120370, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482002

RESUMO

Acidic partial nitritation (PN) has emerged to be a promisingly stable process in wastewater treatment, which can simultaneously achieve nitrite accumulation and about half of ammonium reduction. However, directly applying anaerobic ammonium oxidation (anammox) process to treat the acidic PN effluent (pH 4-5) is susceptible to the inhibition of anammox bacteria. Here, this study demonstrated the adaptation of anammox process to acidic pH in a moving bed biofilm reactor (MBBR). By feeding the laboratory-scale MBBR with acidic PN effluent (pH = 4.6 ± 0.2), the pH of an anammox reactor was self-sustained in the range of pH 5 - 6. Yet, a high total nitrogen removal efficiency of over 80% at a practical loading rate of up to 149.7 ± 3.9 mg N/L/d was achieved. Comprehensive microbial assessment, including amplicon sequencing, metagenomics, cryosection-FISH, and qPCR, identified that Candidatus Brocadia, close to known neutrophilic members, was the dominant anammox bacteria. Anammox bacteria were found present in the inner layer of thick biofilms but barely present in the surface layer of thick biofilms and in thin biofilms. Results from batch tests also showed that the activity of anammox biofilms could be maintained when subjected to pH 5 at a nitrite concentration of 10 mg N/L, whereas the activity was completely inhibited after disturbing the biofilm structure. These results collectively indicate that the anammox bacteria enriched in the present acidic MBBR could not be inherently acid-tolerant. Instead, the achieved stable anammox performance under the acidic condition is likely due to biofilm stratification and protection. This result highlights the biofilm configuration as a useful solution to address nitrogen removal from acidic PN effluent, and also suggests that biofilm may play a critical role in protecting anammox bacteria found in many acidic nature environments.


Assuntos
Compostos de Amônio , Nitritos , Desnitrificação , Nitrogênio , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos/microbiologia , Bactérias , Biofilmes , Concentração de Íons de Hidrogênio , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...